

Atmospheric Measurements of VOCs at Monitoring Stations: Network data compatibility is essential

Institute for Meteorology and Climate Research, Atmospheric Environmental Research, IMK-IFU Global Atmosphere Watch World Calibration Centre for Volatile Organic Compounds, WCC-VOC Rainer Steinbrecher

<image>

KIT-Campus Alpin

www.kit.edu

Atmospheric Measurements of VOCs at Monitoring Stations: History in WMO-GAW

Problem
Solution
Lessons Learned

World Metreological Organisation Global Atmosphere Watch Program (WMO-GAW) initiative in the 90th of the last century with VOC as a target component

Atmospheric Measurements of VOCs at Monitoring Stations: History

Key objective: high quality data with known uncertainty

First assessment of VOC data quality in the GAW-VOC network published in 2006

Available online at www.sciencedirect.com

Atmospheric Environment 40 (2006) 7508-7527

www.elsevier.com/locate/atmosenv

The first VOC intercomparison exercise within the Global Atmosphere Watch (GAW)

B. Rappenglück^{a,*}, E. Apel^b, M. Bauerfeind^a, J. Bottenheim^c, P. Brickell^c, P. Čavolka^d, J. Cech^e, L. Gatti^f, H. Hakola^g, J. Honzak^e, R. Junek^h, D. Martinⁱ, C. Nooneⁱ, Ch. Plass-Dülmer^j, D. Travers^k, D. Wang^k

3

imk-ifu kit edu

Atmospheric Measurements of VOCs at Monitoring Stations: History

First assessment of VOC data quality in the GAW-VOC network published in 2006

green: NIST-traceable VOO	:	Participants								
voc	А	в	с	D	Е	F	G	н	I	J
ethane	3.8	-64.2	-3.4	-1.2			-2.1	-4.4	-1.1	
ethylene	5.2	-73.5	5.2	7.3			-16.5	-7.5	-2.3	
acetylene	-13.8	-54.7		4.0				-22.4	-25.1	
propane	9.6	1.0	-0.1	2.1	-27.6	-3.0	-2.7	-9.1	-1.0	
propylene	8.0	-1.9	5.4	11.5	-66.0	2.3	-15.7	-2.3	1.1	
i-butane	9.4	81.5	8.4	11.0	-33.7	-10.1	1.8	-4.3	2.5	8.
n-butane	6.7	78.8	-0.2	5.7	-30.6	-9.0	-2.6	-3.5	-0.7	
1-butene	4.2	137.3	6.4	11.2					3.2	
t-2-butene	3.4	47.0	7.5	9.2		-18.1			-2.8	12.1
i-butene	6.9		2.7	10.3				2.3	-3.8	
c-2-butene	-2.4		1.8	4.3		-7.6	_	-12.7	-7.4	3.3
i-pentane	-14.3		-2.3	5.2	-42.9		-5.8	-12.1		-2.5
n-pentane	-26.3		-1.5	3.7		-0.2	-0.6			
isoprene	5.5	-98.0	-6.2	-17.0	-78.8	-16.7	-2.5	5.2	1.4	-1.3
t-2-pentene	-52.2	-22.9	92.3	6.6		-6.8	-4.0	-29.3	-11.6	23.8
c-2-pentene	-20.8	19.8	3.6	-0.6	_	-6.4	-1.7	-12.2	-5.4	1.0
2-me pentane			5.9			-17.2	1.2			
3-me-pentane			0.7	13.3		-7.9	-4.6			2.3
n-hexane	-27.3	236.6	-3.0	4.3	-40.8	-11.5	0.2	-30.7	-12.8	-0.(
benzene	6.3	208.2	-5.5	2.9	_	0.5	-0.4	-14.7	-5.2	
cyclohexane	51.4			_		-22.7				
n-heptane	5.1		-6.5	4.3	-45.0	6.7	3.5		-1.4	-0.5
toluene	27.2	-79.8	-5.1	10.1	-22.2	16.6	_	-6.5		10.1
et-benzene			1.1	-3.0	75.5	1.1		-21.1	3.0	5.3
m,p-xylene	_		4.1	-2.4	34.0	-14.3		-16.3	7.4	0.4
o-xylene		1529.6	5.1		228.2	-22.9		-28.5	_	
1,3,5 trime-benzene			-29.0			-90.8				-16.
1,2,4 trime-benzene			30.0			-82.4				0.8

Results that did not meet the DQOs are shown in red

Approx. only 50% of the labs performed reasonably well.

Deviation in % from the WCC-VOC reference values (Standard CC154935)

4 17.03.2021

Atmospheric Measurements of VOCs at Monitoring Stations: History

First assessment of VOC data quality in the GAW-VOC network published in 2006 by Rappenglück et al.

Approx. only 50% of the labs performed reasonably well.

Achieving high quality VOC data with known uncertainty requires:

- an efficient quality assurance and quality control framework with
- calibrations traceable back to a reference amount fraction

WCC-VOC and traceability

Traceability in the GAW-Volatile Organic Compounds (VOC) network

Currently, focus on 21 VOC target compounds (see GAW-Report 171, 2006) Central Calibration Laboratories (CCL)

 nonmethane hydrocarbons (NMHC), National Physical Laboratory (NPL, UK)

- monoterpenes (MTs) e.g. a-pinene, limonene

- dimethylsulfid (DMS)

National Institute of Standards (NIST, USA)

Korea Research Institute of Standards and Science (KRISS, South Korea)

In preparation:

Van Swinden Laboratory (VSL, The Netherlands)

KRISS

- acetonitril (ACT)

- oxyVOCs

6

 \bigcirc

WCC-VOC and traceability

Traceability of Calibrations and Audits

7

Rainer Steinbrecher – Atmospheric measurements of VOCs and QA/QC

VOC Network audits and intercomparisons with a set of traceable VOC mixtures in nitrogen and whole air standards

(single compound amount fraction range: (0.1 to 100 nmol/mol)

Shipping

History

Problen

•

Example: GAW Global Station Cape Verde

GAW Global Station Cape Verde: Air sampling and VOC analysis

GAW-VOC analysis: Water removal

Two stage water removal with cold traps (-30 °C; -40°C)

11

History

Probler

Solution

son

GAW-VOC analysis: Calibration with gas standards

Pressurised traceable NMHCs gas mixtures

Permeation system for oxy-VOC mixture

Results: GAW Global Station Cape Verde (NMHCs in nitrogen)

The system is excellently suitable for NMNHCs measurements and reported amount fractions are traceable with no bias to the GAW-VOC scale

Results: GAW Global Station Cape Verde (Whole Air)

Reported values for the whole air standard are also well within the DQOs demonstrating that GAW-VOC targets in whole air samples are also analysed with excellent quality

Results: GAW Global Station Cape Verde (oxy-VOC)

Determined amount fractions for oxy-VOC meet the DQOs with methanol and methylvinyl ketone at the edge of the limit.

Audit summary: GAW Global Station Cape Verde (oxy-VOC)

Audit Aspect	Adequacy (0 = inadequate (□□□□□□) through 5 = adequate (□□□□□))	Recommendations		
Access		Keep high standard		
Facilities		Keep high standard		
Laboratory and office space		Keep high standard		
Air conditioning		Keep high standard		
Power supply		Keep high standard		
General management and operation		Keep high standard		
Organisation		Keep high standard		
Competence staff		GAWTEC training encouraged		
Air inlet system		Keep high standard		
Instrumentation		Same tubing/connector material after the manifold; encouraged OH/NO3 reactivity and formaldehyde measurements		
Trace gases		Keep high standard		
Instrumental performance VOC		Keep high standard		
Standards	*****	Keep high standard		
Data management		Keep high standard		
Data acquisition		Keep high standard		
Data processing		Keep high standard		
Data submission		oxyVOCs, DMS encouraged		
Documentation		Keep high standard		
Log books and internal instructions		Keep high standard		
Web site		Keep high standard		
GAWSIS		Data availability and location update		

GAW-VOC targets are reported within the current limits of the DQOs demonstrating an excellent analytical performance of the implemented system including calibration procedures.

WMO Global Atmosphere Watch

WCC-VOC REPORT 2020/1

Report to the World Meteorological Organization

SYSTEM AND PERFORMANCE AUDIT FOR NON METHANE VOLATILE ORGANIC COMPOUNDS

Global GAW Station – Cape Verde Atmospheric Observatory Calhau, Cape Verde

December 2019

by Rainer Steinbrecher and the CVO Team

WMO World Calibration Centre for VOC Karlsruhe Institute of Technology KIT/IMK-IFU, Garmisch-Partenkirchen, Germany

https://www.imk-ifu.kit.edu/wcc-voc/activities.html

World Calibration Centre for VDCs

VOC Network comaptibility

89 Stations with data Station Cape Verde £ 900 km Mapbox @ Mapbox @ WMO @ OpenStreetMap Global Regional Contributing networks

Global

17

Local

Other networks

Operational

Closed

Planned Pre-operational Stand-by

Partly operational

Non-reporting

VOC Network compatibility

Results of 23 intercomparisons and audits at 16 facilities (2007 to 2020)

NMHCs traceable standards in nitrogen (single compound range: 1 - 4 nmol/mol)

The boxplot (25th/75th/95th) percentiles) highlights the good analytical performance in the GAW-VOC network for NMHC targets.

 Improvements possible for ethyne analysis.

ATMOSPHERE

Essentials for good network data compatibility

- A state-of-the-art quality assurance and quality control framework (QA/QC) with:
- Traceable network standards
- Suitable measurement guidelines
- Trained personnel
- Regular audits and intercomparisons
- Closed issue loops
- QA/QC workshops

Key elements of good practice in the upcoming European Research Infrastructure Aerosol, Clouds and Trace Gases (ACTRIS; https://www.actris.eu) with its Topical Centres e.g. Center for Reactive Trace Gases in Situ Measurements (CiGas)

Atmospheric Measurements of VOCs at Monitoring Stations: Network data compatibility is essential

Happy to take questions

